给体位置和数目对四苯基乙烯衍生物 双光子吸收性质的影响^{*}

赵珂† 宋军 张瀚

(山东师范大学物理与电子科学学院,济南 250358)

(2019年4月1日收到; 2019年7月3日收到修改稿)

在杂化密度泛函水平上,利用响应函数方法,计算了一类四苯基乙烯衍生物的双光子吸收性质.考虑了 四苯基乙烯上给电子基团的位置和数目对双光子吸收性质的影响.并且,根据实验者采用的分子,通过增加 分子的平面性和共轭长度,以及增强给体强度,理论设计了三种分子结构,并计算了它们的双光子吸收性质. 结果表明,给体位置和数目对双光子吸收性质有重要影响.位于分子末端的给体取代基能有效提高双光子吸 收强度.随着给体数目的增加,双光子吸收波长发生红移.在四苯基乙烯的不同侧位上添加给体取代基对双 光子吸收性质的影响有明显差异.与实验者采用的分子相比,理论设计的分子结构双光子吸收截面均明显增 大.当三苯胺基代替四苯基乙烯基之后,双光子吸收峰发生较大红移,双光子吸收截面明显增大.

关键词:四苯基乙烯,双光子吸收,给体位置,给体数目 **PACS**: 31.15.es, 33.80.Wz, 82.50.Pt

DOI: 10.7498/aps.68.20190471

1 引 言

近年来,许多同时具有双光子吸收 (two-photon absorption, TPA) 和聚集诱导发光 (aggregationinduced emission, AIE) 特性的化合物被合成,并 且已经应用于双光子荧光显微成像、上转换激射和 光动力学治疗等领域^[1-10]. Kim 等^[2]首先报道了一 种具有 TPA 和 AIE 特性的染料分子^[1],并成功地 用于双光子荧光细胞成像. 对于此类分子材料,不 仅要求具有强的 TPA,还要求在高浓度下能够克 服荧光猝灭现象^[1]. 一方面,为了增强 TPA,在分 子设计中经常引入给电子基团 (donor, D) 或吸电 子基团 (acceptor, A). 已有的研究表明,增强分子 内电荷转移可以提高 TPA 强度^[11,12]. 另一方面, 为了产生足够强度的荧光,基于分子内旋转受限 机制^[13,14],具有特殊螺旋桨结构的四苯基乙烯 (tetraphenylethylene, TPE) 和三苯胺基团经常出 现在 TPA 和 AIE 材料中^[3-8]. 它们不仅具有良好 的电子给予能力, 而且其结构在聚集状态下可以有 效避免紧密堆积和荧光猝灭现象. Hu 等^[3] 和 Zhang 等^[4] 发现, 一类由 TPE 构成的材料显示出 优异的 TPA 和 AIE 特性. Jiang 等^[5]和 Wang 等^[6] 合成了一系列含有三苯胺基团的多枝分子, 这些分 子均有较强的 TPA, 同时也具有 AIE 特性. 尽管 目前实验者已经合成了许多具有 AIE 特性的 TPA 材料, 但据我们所知, 相关的理论研究还非常 少^[1,15,16]. 在我们以前的工作中, 理论研究了一组 TPE 衍生物的 TPA 性质, 分析了二聚化和异构 对 TPA 性质的影响, 并且理论设计了一系列具有 强 TPA 性质的 TPE 衍生物分子^[15].

对于含有 TPE 基团的 TPA 和 AIE 材料,实验者通常在 TPE 上添加给电子基团以增强 TPA 强度,而给体的取代位置和数目存在多种可能.不

^{*} 山东省自然科学基金 (批准号: ZR2014AM026) 资助的课题.

[†] 通信作者. E-mail: zhaoke@sdnu.edu.cn

^{© 2019} 中国物理学会 Chinese Physical Society

同的取代方式可以产生不同的多枝结构,分枝之间的相互作用对非线性光学响应具有重要影响^[17,18].因此,需要研究给体的位置和数目对 TPA 性质的影响已经被广泛研究,但是关于给体或受体位置和数目对 TPA 性质影响的研究还很少^[19]. Chattopadhyaya等^[19]研究了一系列给体/受体取代的双蔥分子的 TPA 性质,发现添加三对给体/受体的双蔥分子的 TPA 强度比具有特定排列的一对给体/受体的 双蔥分子小.他们的结果清楚地表明,增加给体/受体基团的数目不一定增强体系的 TPA 强度.据我们所知,TPE 基团上给体位置和数目对 TPA 性质影响的研究还未见报道.

最近, Gu 等^[10] 合成了一种新的光敏剂 TPEDC 分子. 该分子具有强 TPA 和荧光, 可以用于光动 力学治疗. TPEDC 分子含甲氧基、TPE 和氰基基 团, 具有 D-共轭桥 (π)-A 型分子结构. 以 TPEDC 分子为模型, 我们研究了给体位置和数目对 TPA 性质的影响. 并且, 在研究结果的基础上, 根据具 有 AIE 特性的分子结构特点, 综合考虑了结构与 TPA 性质之间的关系, 理论设计了具有更大 TPA 截面的分子结构, 为实验者合成具有 TPA 和 AIE 特性的功能材料提供了理论指导.

2 理论方法

当忽略非共振吸收影响时, 双光子跃迁矩阵元 S_{αβ}可表示如下^[20]:

$$S_{\alpha\beta} = \sum_{s} \left[\frac{\langle 0 | \mu_{\alpha} | s \rangle \langle s | \mu_{\beta} | f \rangle}{\omega_{s} - \omega} + \frac{\langle 0 | \mu_{\beta} | s \rangle \langle s | \mu_{\alpha} | f \rangle}{\omega_{s} - \omega} \right]. \tag{1}$$

式中 $\mu_{\alpha(\beta)}$ 是电偶极矩算符; $\alpha \pi \beta \beta$ 别代表分子的 x, y, z轴; $|0\rangle \pi |f\rangle$ 表示初态和末态. 假设共振 条件是 2 $\omega = \omega_{\rm f}$,其中 ω 是激光的频率, $\hbar \omega_{\rm f}$ 是末态的激发能,求和包含所有的电子态 (包括初态、末态和所有中间态), $\hbar \omega_s$ 表示中间态 $|s\rangle$ 的激发能.

采用响应函数方法^[21]来计算双光子跃迁矩阵 元.响应函数方法是一种含时微扰方法.在该方法 中,双光子跃迁矩阵元可以通过二次响应函数的留 数得到

$$\lim_{\omega \to \omega_{\rm f}} \left(\omega_{\rm f} - \omega \right) \left\langle \left\langle \mu_{\alpha}; \mu_{\beta}, \mu_{\gamma} \right\rangle \right\rangle_{(1/2)\omega_{\rm f},\omega} = S_{\alpha\beta} \left\langle f \right| \mu_{\gamma} \left| 0 \right\rangle,$$
(2)

其中 μ_{γ} 是电偶极矩算符; γ 代表分子的 x, y 或

*z*轴.

当单色偏振光激发分子材料时, 微观 TPA 截 面δ可表示为^[22]

$$\delta = \sum_{\alpha,\beta} \left(2S_{\alpha\alpha}S^*_{\beta\beta} + 4S_{\alpha\beta}S^*_{\alpha\beta} \right), \tag{3}$$

从而可以得到与实验测量结果相比较的 TPA 截 面^[22]:

$$\sigma = \frac{4\pi^2 a_0^5 \alpha}{15c} \frac{\omega^2}{\Gamma_{\rm f}} \delta,\tag{4}$$

式中 a_0 是玻尔半径; α 是精细结构常数; c是真空 中光速; ω 是入射光频率; Γ_f 是与末态寿命有关的 末态能级展宽, 采用一个通常的值, $\Gamma_f = 0.1 \text{ eV}$. TPA 截面的单位是 GM, 1 GM = 10^{-50} cm^4 ·s/photon.

应用 Gaussian16^[23] 程序包,在杂化密度泛函 B3LYP 的水平上,采用 6-31g(d, p) 基矢,对所有 分子结构进行了几何优化.在 CAM-B3LYP 泛函 的水平上,采用 6-31g(d) 基矢,在 Dalton2013^[24] 程序包中计算了分子的 TPA 截面.并且,通过极化 连续模型考虑了水溶剂的影响.我们曾应用 B3LYP 泛函计算过各种类型分子的 TPA 性质^[15,16,25–29], 因此,也采用 B3LYP 泛函计算了 TPA 截面.发现 两种泛函的计算结果相对趋势是一致的,可以得到 基本一致的结论.对于电荷转移分子,CAM-B3LYP 泛函由于考虑了长程修正,原理上计算结 果更准确,近年来被广泛使用.因此,本文均采用 CAM-B3LYP 泛函计算 TPA 性质.

3 结果与讨论

3.1 给体位置效应

TPEDC分子简称 T 分子,其化学结构式见 图 1. 通过观察 T 分子的结构式,可以想到,在 TPE 单元上的两个甲氧基可能存在几种不同的取 代方式.并且,两个乙烯基桥存在顺式和反式异构 体结构.考虑这两方面,得到了 T 分子的几种异构 体结构 T1—T5. 它们的化学结构式如图 1 所示. T,T2 和 T4 分子的结构差异是 TPE 单元上的两 个甲氧基取代位置不同.T1,T3 和 T5 分子具有顺 式构型,相应的反式构型分别是 T,T2 和 T4 分子. 优化的几何结构如图 2 所示.优化结构显示,所有 分子的 TPE 部分均成螺旋桨结构.分子中心的两 个苯环不在一个平面上,有一定角度的扭转,二面 角约为 33°. 菁基两侧的苯环也不在一个平面上, 二面角约为 72°. 此外, 计算结果显示, 这些分子异 构体的能量从小到大依次为 T, T1, T4, T5, T3,

图 1 T和 T1—T5分子的化学结构式

优化的 T 和 T1— T5 分子的结构 图 2 Fig. 2. Optimized geometries of the T and T1-T5 molecules.

T2, 能量差异非常小. T与 T1 分子的能量差只有 0.002 kcal/mol, T2 与 T3 能量差为 0.003 kcal/mol, T4 与 T5 能量差为 0.001 kcal/mol, T 与 T2 的能 量差也只有 0.08 kcal/mol.

通过响应函数方法计算了水溶液下所有异构 体的 TPA 性质. 六个最低激发态的 TPA 波长 $\lambda_{\rm m}$ 和截面 σ 列于表1中.结果显示,所有体系的第一、 第三和第四激发态均有较强的 TPA, $\lambda_{\rm m}$ 分别对应 于 740, 610 和 575 nm 附近. 最大的 TPA 截面均 发生在第三激发态 S3, 对应的 λ_{tv} 是 610 nm 左右. 与 T 分子相比, T2 和 T4 分子的三个较强吸收态 的 TPA 截面均有所减小. 对于 T2, 最大 TPA 截 面在 614 nm 处, 为 893 GM. 对于 T4, 最大 TPA 截面减少到 880 GM, 位于 615 nm. 这些结果表明 给体的位置对 TPA 强度有重要影响. 此外, 相对 于 T4 分子, T 和 T2 分子的 TPA 截面较大, 说明 位于分子末端的甲氧基给体能有效地提高 TPA 强 度. 可以看到, 与 T, T2 和 T4 分子反式结构相比, 对应的顺式结构 T1, T3 和 T5 分子具有较低的 TPA 强度. T1 的最大 TPA 截面为 858 GM, 相对 于 T 的值 944 GM 减少了 86 GM. 对于 T3 和 T5, 最大 TPA 截面分别减少了 20 和 53 GM. 因此, 如 果考虑顺式异构体,可以预测整个体系的 TPA 强 度会有所减弱.

3.2给体数目效应

可以看出,这些分子体系具有多枝结构,分枝 之间的复杂耦合决定了分子的 TPA 性质. 已有研 究表明,对于多枝分子,分枝间的耦合对分子的光 学性质有重要影响[17,18]. 根据耦合作用的强弱, TPA 强度相对于分枝单元会表现出协同加强、简 单加和、甚至削弱的不同趋势[30-32]. 人们通常采 用简单的弗兰克激子模型来研究分枝间的耦合作

	Tal	ole 1. Th	ne TPA wa	velength λ	$_{tp}$ (nm) and	the TPA	cross sectio	on $\sigma(GM)$	of the lowe	est six exci	ted states.	
	Т		T1		T2		Т3		Τ4		T5	
	$\lambda_{ m tp}/{ m nm}$	$\sigma/{ m GM}$	$\lambda_{ m tp}/{ m nm}$	$\sigma/{ m GM}$	$\lambda_{ m tp}/{ m nm}$	$\sigma/{ m GM}$	$\lambda_{ m tp}/ m nm$	$\sigma/{ m GM}$	$\lambda_{ m tp}/{ m nm}$	$\sigma/{ m GM}$	$\lambda_{ m tp}/{ m nm}$	$\sigma/{ m GM}$
S1	743	719	743	696	740	707	738	672	743	638	743	629
S2	650	4	649	2	651	10	651	6	652	8	653	4
S3	612	944	612	858	614	893	612	873	615	880	615	827
S4	572	305	572	334	578	212	575	259	578	136	580	175
S5	556	3	556	5	557	4	556	5	557	4	557	5
$\mathbf{S6}$	540	15	540	9	542	2	540	5	542	3	541	2

表 1 分子六个最低激发态的 TPA 波长 λ_{tp} (nm) 和 TPA 截面 σ (GM)

用^[17,18]. 在该模型中,分枝间的相互作用主要考虑 偶极-偶极相互作用. 在 TPE 各分枝上是否添加给 体,会影响 TPE 各分枝的偶极矩,进而影响分枝 间的相互作用. 因此,在 TPE 上添加更多的给体 取代基能否产生更强的 TPA,还需要进一步仔细 研究.为此,我们考虑了 R,S和 U几种分子结构, 它们的化学结构式和相应的优化几何结构如图 3 所示.对于 R,S,T和 U分子,TPE 部分的给体数 目不同.结构 R 中的 TPE 部分没有连接甲氧基, 结构 S 中只有一个末端甲氧基,结构 U包括三个 甲氧基,其中两个添加在 TPE 基团的侧位上,一 个位于分子的末端.

图 3 R, S和U分子的化学结构式和优化的几何结构 Fig. 3. Chemical structures and optimized geometries of the R, S and U molecules.

R,S和U分子的TPA性质的计算结果列于 表 2 中. 与 T 分子类似, 这些分子仍然具有三个较 强的 TPA 态. 对于 S 和 U 分子, 第三激发态具有 最大的 TPA 截面, 而 R 分子 TPA 截面最大的态 是第五激发态. R 分子的第四和第五激发态的能量 几乎是简并的.可以发现,随着取代基数目的增加, 三个 TPA 吸收峰的位置依次发生红移. 例如, 第 三激发态的λw依次为 595, 603, 612 和 621 nm. 与R和S分子相比, T和U分子结构具有较强的 TPA 强度. 说明添加给体取代基能够有效增强 TPA. 从整体上看, 分子 T 和 U 具有类似的 TPA 特性. 在 T 结构的基础上, 在 TPE 侧位增加一个 给体取代基 (U分子)并没有有效地增强 TPA. 而 我们发现,在S分子的基础上,在TPE侧位增加 一个甲氧基成为 T 分子结构时, 最大 TPA 截面有 较大提高,由 785 GM 增加到 944 GM. 这可能是

因为两个侧位位置相对于体系的给体氰基位置不同引起的. 我们还注意到, 当只有末端位置有取代基的时候, S分子在 729, 603 和 567 nm 处有三个较强的 TPA 峰, 而且这三个 TPA 吸收峰强度差别不大.

表 2 分子六个最低激发态的 TPA 波长 λ_{tp} (nm) 和 TPA 截面 σ (GM)

Table 2. The TPA wavelength $\lambda_{\rm tp}$ (nm) and the TPA cross section σ (GM) of the lowest six excited states.

_	R		S		U		
	$\lambda_{\mathrm{tp}}/\mathrm{nm}$	$\sigma/{\rm GM}$	$\lambda_{\mathrm{tp}}/\mathrm{nm}$	$\sigma/{\rm GM}$	$\lambda_{\mathrm{tp}}/\mathrm{nm}$	$\sigma/{\rm GM}$	
S1	719	500	729	646	754	769	
S2	631	27	642	19	658	7	
S3	595	597	603	785	621	931	
$\mathbf{S4}$	557	4	567	640	580	118	
S5	556	853	557	4	557	4	
S6	540	99	541	29	541	11	

3.3 电荷转移

TPA 性质与分子内电荷转移密切相关. 当分子从基态跃迁到激发态时, 分子内的电荷会重新分布. 为了更好地理解给体位置和给体数目对分子内电荷转移的影响, 计算了 T, T2 和 T4 以及 R, S 和 U 在基态和第一激发态的自然键轨道电荷分布情况. 为了便于分析, 将所研究的分子分成两部分, 四苯基乙烯基团连同给体甲氧基一起作为A 部分, 剩余部分为 B 部分. 以 T 分子为例, 如图 4 所示.

图 4 T分子的 A 和 B 两部分 Fig. 4. The A and B parts of the T molecule.

表 3 列出了分子基态和激发态 A 和 B 两部分 的电荷计算结果.其中 Q_{A0} 和 Q_{A1} 分别代表 A 部 分基态和第一激发态的电荷, Q_A 表示 A 部分基态 和第一激发态的电荷差.同样, Q_{B0} 和 Q_{B1} 分别代 表 B 部分基态和第一激发态的电荷, Q_B 表示 B 部 分基态和第一激发态的电荷差.所有电荷单位为 e, 1e = 1.602 × 10⁻¹⁹ C.分子 T 的 A 部分第一激发 态电荷是 0.3978e,比基态电荷 0.0298e 具有更强 的电正性.相应地,B 部分的第一激发态相比基态 表现出更强的电负性.这说明分子 T 的 A 部分是 电子给体,而 B 部分为电子受体.对于其他分子, 情况亦如此.可以看到,T 给体电荷差 Q_A 为 0.3680e,T2 和 T4 的 Q_A 分别为 0.3609e 和 0.3772e, 电荷差相差不大.这说明给体位置对分子内电荷转 移有影响,但影响并不明显.比较 R,S,T 和 U 分 子的电荷差,发现它们的电荷差依次增大.S 比 R 的电荷差增加了 0.0377e,T 比 S 的电荷差增加 了 0.0438e,U 比 T 又增加了 0.0625e.因此,随着 给体数目的增加,从基态到第一激发态的分子内电 荷转移明显增强.

表 3 分子各部分的基态电荷和第一激发态电荷 (单位: e)

Table 3. Net charges (unit: e) for divided parts of the molecules in the ground states and in the first excited states.

	$Q_{ m A0}/e$	$Q_{\rm A1}/e$	$Q_{\rm A}/e$	Q_{B0}/e	Q_{B1}/e	$Q_{\rm B}/e$
Т	0.0298	0.3978	0.3680	-0.0298	-0.3978	-0.3680
T2	0.0292	0.3901	0.3609	-0.0292	-0.3901	-0.3609
T4	0.0294	0.4066	0.3772	-0.0294	-0.4066	-0.3772
\mathbf{R}	0.0271	0.3136	0.2865	-0.0271	-0.3136	-0.2865
\mathbf{S}	0.0284	0.3526	0.3242	-0.0284	-0.3526	-0.3242
U	0.0305	0.4340	0.4305	-0.0305	-0.4340	-0.4305

3.4 分子设计

理论设计出同时具有较强 TPA 和 AIE 特性 的材料对双光子荧光显微成像技术的应用具有重 要意义.在分子设计中,需要考虑已经确定的结构 与性质关系.已有研究表明,许多结构因素在增强 有机分子的 TPA 中起到了重要作用,如给电子基 团和吸电子基团的强度,π共轭中心特性和分子平 面性,以及分子的共轭长度和聚集方式等.我们在 TPEDC 体系的基础上,考虑了一些结构因素,理 论设计了同时具有 TPA 和 AIE 特性的分子,并计 算了设计分子的 TPA 性质.

设计分子的化学结构式和相应的优化几何结构如图 5 所示.为了提高分子的平面性,增加分子的共轭长度,设计了 T 分子的同分异构体 X 分子.

考虑到三苯胺基团也具有螺旋桨结构,并且常用 于 AIE 材料设计中,在 T 分子的基础上,用三苯 胺基团代替四苯基乙烯基团,设计了 Y 分子.最后 将 Y 做进一步改进,设计了 Z 分子.优化结构显 示,X 分子中心的三个苯环相互之间扭转了约 33°, 均位于分子的主干方向上,相比于 T 分子,增加了 分子的平面性和共轭长度.与 T 分子类似,Y 分子 中菁基两侧的苯环扭转角约为 70°左右.含有三苯 胺基团的 Z 分子与 Y 分子相比,平面性更好,共轭 长度也有所增加.

图 5 X, Y和Z分子的化学结构式和优化几何结构 Fig. 5. Chemical structures and optimized geometries of the X, Y and Z molecules.

X, Y和Z分子 TPA 性质的计算结果列于 表 4. 相对于实验中的 T 分子, 三个设计分子的 TPA 截面均有明显提高. X和 Y分子的最大 TPA 态仍在第三激发态. X 分子的最大 TPA 截面 σ 为 1906 GM, 位于 615 nm. 与 T 分子相比, σ 有 显著提高,说明增加分子的平面性和共轭长度可以 有效提高 TPA 截面. Y 分子的最大 TPA 截面为 1763 GM, 位于 579 nm. 与 T 分子比较, σ也明显 增大,说明三苯胺基比四苯基乙烯基更有利于分子 内的电荷转移,具有更强的给电子能力.Z分子在 802 nm 处具有最大的 TPA 截面, 值为 2259 GM. 与 X 分子相比, Z 分子的吸收截面更强, 也说明三 苯胺基比四苯基乙烯基更有利于分子内的电荷转 移,具有更强的给体强度.在所有研究的分子中, Z分子的 TPA 强度最大, 这是因为 Z分子具有较 好的平面性和较长的共轭长度,并且具有较强的给 体三苯胺基.

为了便于比较,还模拟了 X, Y, Z和 T 分子的 TPA 光谱,如图 6 所示.可以看到,这些分子

在 600—850 nm 之间均有多个较强的 TPA 吸收 峰.设计分子的吸收峰强度均比实验中的 T 分子 强.X,Y和 Z 在长波范围内均有较强的吸收峰,这 些吸收峰相对 T 分子有不同程度的红移.当三苯 胺基代替四苯基乙烯基之后,Y和 Z 的吸收峰都 发生了较大红移.根据(1)式,双光子跃迁矩阵元 与分子的激发能和偶极矩有直接关系.相关的激发 能越低,越有利于增大 TPA 截面.与 X和 T 相比, Y和 Z 的吸收波长有较大的红移,说明它们的激 发能较低,因此 Y和 Z 具有更强的 TPA.

表 4 分子六个最低激发态的 TPA 波长 $\lambda_{\rm pp}$ (nm) 和 TPA 截面 σ (GM)

Table 4. The TPA wavelength λ_{tp} (nm) and the TPA cross section σ (GM) of the lowest six excited states.

	Х		Y	7	Z		
	$\lambda_{ m tp}/{ m nm}$	$\sigma/{\rm GM}$	$\lambda_{ m tp}/{ m nm}$	$\sigma/{\rm GM}$	$\lambda_{ m tp}/{ m nm}$	$\sigma/{\rm GM}$	
S1	747	947	824	1543	802	2259	
S2	663	40	634	737	602	1362	
S3	615	1906	579	1763	582	1	
$\mathbf{S4}$	560	1	576	91	540	57	
S5	542	65	570	606	527	738	
$\mathbf{S6}$	525	502	560	50	546	4	

图 6 X, Y, Z和T分子的TPA 谱 Fig. 6. TPA spectra of the X, Y, Z and T molecules.

对于设计 TPA 和 AIE 材料, 不仅要求分子材 料具有大的 TPA 截面, 还要求在高浓度下具有较 高的荧光量子产率. 例如, 双光子荧光探针的性能 通常采用 TPA 活性截面来表征, 即 TPA 截面与 荧光量子产率的乘积. 因此, 在提高 TPA 截面的 同时, 还应该考虑对荧光量子产率的影响. 比如, 增加分子平面性可以提高 TPA 截面, 但可能会降 低分子的发光效率. 我们理论设计的分子采用了具 有螺旋桨结构的四苯基乙烯基和三苯胺基,可以有效避免紧密堆积和荧光猝灭,因此可能具有 AIE 特性^[3-6],从而具有较好的应用前景.

4 结 论

应用密度泛函响应函数方法结合极化连续模 型研究了含四苯基乙烯和氰基基团的一系列 D-π-A 型有机分子的 TPA 性质. 研究了给体位置和数 目对 TPA 性质的影响,分析了给体位置和数目对 分子内电荷转移的影响,并且,根据已有的结构与 性质关系,理论设计了三种分子结构,并计算了它 们的 TPA 性质. 结果表明, 给体的位置和数目对 TPA 强度有重要影响. 位于分子末端的甲氧基给 体能有效地提高 TPA 强度. 随着取代基数目的增 加, TPA 吸收峰的位置发生红移. 在四苯基乙烯不 同的侧位上添加电子给体基团对 TPA 性质的影响 有明显差异.由于分子呈现分枝结构,分枝间复杂 的耦合导致了这些性质差异. 给体位置对分子内电 荷转移有影响,但影响并不明显.随着给体数目的 增加,分子内电荷转移明显增强.跟实验中的分子 相比,理论设计的分子 TPA 截面均有明显提高. 由于这些分子均含有螺旋桨结构的四苯基乙烯或 三苯胺基团,因此可能具有 AIE 特性,从而可以应 用于双光子光动力学治疗,频率上转换激射和双光 子荧光探针等领域.

参考文献

- Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N 2006 Adv. Funct. Mater. 16 2317
- [2] Kim S, Pudavar H E, Bonoiu A, Prasad P N 2007 Adv. Mater. 19 3791
- [3] Hu R, Maldonado J, Rodriguez M, Deng C, Jim C W, Lam J Y, Yuen M F, Ramos-Ortiz G, Tang B Z 2012 J. Mater. Chem. 22 232
- [4] Zhang Y, Li J, Tang B Z, Wong K S 2014 J. Phys. Chem. C 118 26981
- [5] Jiang Y, Wang Y, Hua J, Tang J, Li B, Qian S, Tian H 2010 Chem. Commun. 46 4689
- [6] Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S, Tian H 2011 Chem. Eur. J. 17 2647
- [7] Xu B, Xie M, He J, Xu B, Chi Z, Tian W, Jiang L, Zhao F, Liu S, Zhang Y 2013 Chem. Commun. 49 273
- [8] Jiang T, Qu Y, Li B, Gao Y, Hua J 2015 RSC Adv. 5 1500
- [9] Qu C, Gao Z, Chen Y 2018 J. Lumin. 194 40
- [10] Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B 2017 Adv. Mater. 29 1701076
- [11] He G S, Tan L S, Zheng Q, Prasad P N 2008 Chem. Rev. 108 1245

- [12] Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244
- [13] Hong Y, Lam J W Y, Tang B Z 2009 Chem. Commun. 29 4332
- [14] Hong Y, Lam J W Y, Tang B Z 2011 Chem. Soc. Rev. 40 5361
- [15] Wang F Q, Zhao K, Zhu M Y, Wang C K 2016 J. Phys. Chem. B 120 9708
- [16] Song J, Zhao K, Zhang H, Wang C K 2019 Mol. Phys. 117 672
- [17] Katan C, Terenziani F, Mongin O, Werts M H V, Porrès L,Pons T, Mertz J, Tretiak S, Blancharddesce M 2005 J. Phys. Chem. A 109 3024
- [18] Terenziani F, Morone M, Gmouh S, Blancharddesce M 2006 Chem. Phys. Chem. 7 685
- [19] Chattopadhyaya M, Alam M M, Chakrabarti S 2011 J. Phys. Chem. A 115 2607
- [20] Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718
- [21] Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235
- [22] Monson P R, Mcclain W M 1970 J. Chem. Phys. 53 29
- [23] Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT,

2016 http://www.gaussian.com/ [2019-3-31]

- [24] Dalton, a Molecular Electronic Structure Program, Release DALTON2013.0, 2013 http://daltonprogram.org/ [2019-3-31]
- [25] Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814
- [26] Wu X L, Zhao K, Jia H H, Wang F Q 2015 Acta Phys. Sin.
 64 233301 (in Chinese) [武香莲, 赵珂, 贾海洪, 王富青 2015 物理学报 64 233301]
- [27] Zhu M Y, Zhao K, Song J, Wang C K 2018 Chin. Phys. B 27 023302
- [28] Zhao K, Song J, Zhu M Y, Zhang H, Wang C K 2018 Chin. Phys. B 27 103301
- [29] Zhang Y J, Zhang Q Y, Ding H J, Song X N, Wang C K 2015 Chin. Phys. B 24 023301
- [30] Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B. 103 10741
- [31] Adronov A, Fréchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838
- [32] Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071

Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives^{*}

Zhao Ke † Song Jun Zhang Han

(School of Physics and Electronics, Shandong Normal University, Jinan 250358, China) (Received 1 April 2019; revised manuscript received 3 July 2019)

Abstract

Organic materials with strong two-photon absorption response and aggregation induced emission have aroused a great deal of interest in recent years, for their many potential applications such as two-photon fluorescence microscopy, up-conversion laser, photodynamic therapy, etc. The tetraphenylethylene units are usually employed in two-photon absorption and aggregation induced emission materials because of their good electron-donating capability and special propeller starburst structures. Theoretical study on the relationship between molecular structure and two-photon absorption property is of great importance for guiding the experimental design and synthesis of functional materials. In this paper, the two-photon absorption properties of a series of organic molecules containing tetraphenylethylene and cyano groups are studied by employing the density functional response theory in combination with the polarizable continuum model. The molecular geometries are optimized at a hybrid B3LYP level with 6-31g(d, p) basis set in the Gaussian 16 program. The two-photon absorption cross sections are calculated by response theory through using the CAM-B3LYP functional with 6-31g(d) basis set in the Dalton program. The effect of donor position and number on twophoton absorption properties are investigated. In addition, by increasing the planarity and conjugated length of the molecule, as well as by enhancing the strength of the electron donor, we design three molecular structures and calculate their two-photon absorption properties. The results show that the donor position and number have important effects on two-photon absorption properties. The methoxy donor at the end of the molecule can increase the two-photon absorption intensity effectively. As the number of substituents increases, the position of the two-photon absorption peak is red-shifted. The effects of adding electron donor groups on different side positions have a significant difference in the two-photon absorption property. Comparing with the experimental molecules, the two-photon absorption cross sections of the designed molecules are greatly enhanced. When the tetraphenylethylene group is replaced by the triphenylamine group, the two-photon absorption peak is greatly red-shifted, and the two-photon absorption intensity is significantly increased. Since all of these molecules contain tetraphenylethylene or triphenylamine group with propeller structure, they can have both two-photon absorption and aggregation induced emission properties. This study provides theoretical guidelines for synthesizing a new type of active two-photon absorption and aggregation induced emission material.

Keywords: tetraphenylethylene, two-photon absorption, donor position, donor number

PACS: 31.15.es, 33.80.Wz, 82.50.Pt

DOI: 10.7498/aps.68.20190471

^{*} Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM026).

[†] Corresponding author. E-mail: zhaoke@sdnu.edu.cn